
Java/Domino 4.6, Bob Balaban

Page 12-1

Chapter 12

NOI and Java Beans

You've probably heard about Java Beans by now, but unless you're actually developing

some, you're also probably not quite sure precisely what a Java Bean is. That's not too

surprising, since tracking down an authoritative definition isn't easy. Beans are not like

Applets or Servlets: A given Java class is an Applet if it extends java.applet.Applet, or

it's a Servlet if it extends javax.servlet.Servlet. There is no prescribed base class for

Beans.

If you download and install a recent copy of the Java Development Kit (JDK) from

Sun's Web site (http://java.sun.com), you'll find that there is in fact a class called

java.beans.Beans; however, a Java class that wants to be a Bean would probably never

extend this class. There are several characteristics that seem to be included in most

people's definitions of Java Beans. If your Java class includes these, it can be considered

a Bean:

 1. Must have a default constructor (one that takes no arguments).

 2. Method names must follow the Beans naming conventions.

 3. Classes should be serializable, but it's not required. Serializable means that

objects of the class support having their content being serialized on a data

stream. More on this in the following section.

 4. Class can optionally implement events in a standardized way.

 5. Classes can optionally support a java.beans.BeanInfo interface.

 6. Class can optionally support a java.beans.Visibility interface.

The Java Beans specification is freely available from the JavaSoft Web site, and goes into

each of these points in some detail, so I won't try to duplicate that here. What follows in

this chapter is a brief examination of where the Java NOI conforms to these

characteristics and where it departs from them, and why.

Java/Domino 4.6, Bob Balaban

Page 12-2

Background: What About Beans?

One way to look at what Java Beans are about is to think of them as Java's answer to

Microsoft's OCX and Active/X component technology. People who early on jumped on

the downloadable Java Applet bandwagon found that their development efforts

suffered from the lack of standardization around code reuse and event propagation.

Tool builders in particular found themselves blocked in their ability to develop high

level development environments for Java Applets by the fact that it was relatively hard

to read any random .class file and figure out what the code did.

JavaSoft answered these concerns in their Java 1.1 release by incorporating several

new technologies directly in the language: a component model, an event model,

standardization of method naming conventions, serialization and "introspection"

capabilities, among others.

The current level of Bean technology in Java has largely been driven by the needs of

the tool builders: the Borlands and Symantecs and IBMs of the world who have been

building sophisticated development environments for other languages (C, C++, even

SmallTalk) for years are now doing the same for Java. Their early efforts were

hampered because it was so hard to write a tool that could figure out what a given Java

class was all about just from its compiled byte codes (not impossible, just hard). The

common goal of these tool builders was to make the language support the right set of

features, to enable them to create development tools that could, for example, allow a

user to drag icons representing individual Java classes onto a palette, and "wire" them

together into a complete working Applet, all without making the user write a line of

Java code.

There are now a number of tools which in fact support this level of capability: IBM's

Bean Machine, Borland's JBuilder, and Symantec's Visual Cafe (among others) are all

aimed at this kind of functionality, and all make heavy use of the Beans technologies

Java/Domino 4.6, Bob Balaban

Page 12-3

listed above. This focus has tended (in my opinion) to skew the discussions and

developmental efforts around Java Beans toward an Applet-centric and user-interface-

centric view of the Java component world. The Java Notes Object Interface, on the other

hand, is (at least in its Domino 4.6 incarnation) very much oriented toward

development of server-based applications and Agents. That's not to say that the

currently available visual builder tools are not appropriate for use with NOI, only that

the strengths of each do not necessarily mesh well (yet).

Let's delve briefly into the important new Beans-oriented technologies in the Java

1.1 release, and also consider how NOI deals (or doesn't deal) with each.

Java Beans Technologies

Method Naming Conventions

Although Java makes no explicit distinction between the methods and properties of a

class, other languages do, and people often find tools that present these distinctions

more approachably. If you associate properties with object attributes (blue, bold, x

pixels wide by y pixels high), and methods with object behaviors (start, stop, move to a

new location on the screen), you have a nice division of the object's interface.

The Java Beans spec gives you some standard patterns for naming the methods on a

class so that pairs of set/get methods can be collected into single properties by a process

of induction. Take, for example, these two methods from the lotus.notes.View class (see

Chapter 3 for the details):

java.util.Vector getReaders()

void setReaders(java.util.Vector names)

This pair of methods is expressible as a single read/write property: Readers, and a good

builder tool can present just the one property name in a list of properties for the class,

Java/Domino 4.6, Bob Balaban

Page 12-4

hiding the fact that there are really two methods that implement the property. The

pattern here is expressible as follows:

<DataType> get<PropertyName>()

void set<PropertyName>(<DataType>)

Another example of a property pattern is:

boolean is<PropertyName>()

void set<PropertyName>(boolean)

Any pair of methods on a class that fit one of these two patterns qualifies as a Java

Beans read/write property. If only the "get" call of the pair exists, then the property is

read only. You can see why this is nice for builder tools: They can present an object's

properties in a nice user interface and allow users to specify at design time that certain

"event triggers" should cause certain properties to be set to certain values. This allows

the tool to take on the work of writing the actual Java code to implement that logic.

Methods are a bit more eccentric in this world—they can have any number of

arguments and return any type of result (or none at all). Whereas properties lend

themselves to visual "wiring" (get properties take no arguments and return a single

value; set properties return nothing and take only a single value), methods are trickier,

and typically require the user to deal with Java syntax a bit more. Furthermore (again

this is my own opinion), a heavy reliance on exposing the functionality of a class as

properties is much more consistent with UI objects than with server objects. Users have

no trouble visualizing what will happen when an event trigger causes a message to be

sent to an object on the builder's palette causing that object to change some UI

characteristic (size, color, position on the screen, and so on). It's a bit more difficult to

figure out how to represent in a nice visual fashion how an event should cause a

method requiring two or three arguments (a Database open, for example) to get

executed. We'll see some of the implications of this below.

Java/Domino 4.6, Bob Balaban

Page 12-5

The Java NOI classes all conform to the Beans naming conventions, as described in

Chapter 2.

Event Model

Before the release of Java 1.1, events were confined to Java's Abstract Windowing

Toolkit (AWT) subsystem. The Java Beans specification says that any class can be an

event source or an event handler. Without going into all the details of all the various

ways events can be implemented between classes, you can use the new Beans classes to

rather flexibly implement any set of events for a class that makes sense to you. A class

might be only a source (emitter) of events, only a handler (catcher) of events, or it might

do both. Classes that receive event notifications might act on those notifications by

changing one or more of their attributes, by emitting additional events of their own, or

by ignoring them. A class might source an event which constitutes a notification to the

world that it is about to do something, and then listen for a response to see if any

objects out there want to veto the action.

Parenthetically we should note that Lotus's own InfoBus technology, which lets

Java Beans embedded in an Applet page "find" each other and exchange event

notifications and data, has been adopted by JavaSoft and will soon appear as part of the

language specification.

Currently, NOI does not support events. The NOI classes neither source nor listen

for any Java events. This is one of the areas of what you might refer to as the cognitive

dissonance between the very UI/Client-oriented view of Java Beans and the very

"invisible"/Server orientation of NOI for Domino 4.6. There simply is no server analog

(at this time, anyway) to the Applet "page" on which multiple Beans might be

embedded, and within which they might want to communicate with each other.

We can envision such a setup, of course, perhaps in terms of collections of Agents

or Servlets that watch for events of various kinds and use InfoBus (or something) to talk

Java/Domino 4.6, Bob Balaban

Page 12-6

to each other. That technology is not yet here, though. For one thing, both the Domino

Agent framework and the usual HTTP Servlet architecture assume a predefined

triggering of Agents and Servlets: You specify a schedule or pick one of a limited set of

events to trigger an Agent, or you invoke a Servlet via a URL. Servlets and Agents are

loaded into memory and run when invoked. Neither architecture currently supports the

idea of an Agent or Servlet that sits in memory all the time, "listening" for one or more

event notifications, upon receipt of which it does something.

Given the current state of the art, though, it made no sense for the Domino 4.6 NOI

to support event handling on the server, so none was implemented. Chapter 14 comes

back to this topic in the context of future directions for NOI.

Introspection and BeanInfo

Introspection is the ability of a program (typically a builder tool, but it could be any

program) to glean from a Java class the exact methods, properties, and events that the

class implements. You can see why a builder tool would need that information: It has to

present a class's interface in a nice way to a user who may not know how to write a line

of Java code. The best and most reliable way to receive that information is to somehow

get it from the class in question itself.

Before Java 1.1 was released, the only way to introspect a Java class was to read the

Java byte codes from the .class file and parse them yourself. Of course you'd also have

to look for and parse the class's superclasses, if there were any.

Java 1.1 has a new class that handles all this for you, called java.beans.Introspector.

It reads a Java class file from disk and figures out who its superclasses are (if any), and

what methods, properties, and events those classes implement. It returns an instance of

a descriptor class, called java.beans.BeanInfo, which you can interrogate to get the exact

signatures of all public methods, properties, and events.

Java/Domino 4.6, Bob Balaban

Page 12-7

Sometimes, though, a Bean developer wants to hide certain aspects of the Bean.

Perhaps a method was declared public because it gets called by other classes with which

the Bean has a special relationship, but the method shouldn't be called by the builder

tool, or by the end user at all. Or perhaps there's more than one form of some method or

property, and only one of the variants is the one that should be used. In such cases the

developer of a Bean is free to implement her or his own BeanInfo class

(java.beans.BeanInfo is an interface, so any class can implement it). The way you

associate a BeanInfo class with the class which it describes is simply by name: If your

class is named lotus.notes.Session, for example, then the associated BeanInfo class must

be named lotus.notes.SessionBeanInfo.

When the java.beans.Introspector class is asked to parse a Java class, it first looks for

a BeanInfo for that class. If it finds one, it has only to instantiate it and invoke the

descriptor methods to get all the information about that class which the developer

wants known. If no BeanInfo class is found, then the Introspector actually reads the byte

codes for the target class to get the information (this process is called low level reflection).

Because the Java NOI for Domino has no hidden methods or properties, there are

no explicit BeanInfo classes for it. One could argue that certain methods that appear in

the output generated by the javadoc utility should either not have been public or should

be hidden by use of a BeanInfo class. The GetCppObject() call (present in all of the NOI

classes) is one example. It is used internally to get the handle of the C++ object for

which the target Java instance serves as the wrapper. It probably should either have

been declared protected instead of public, or it should have been hidden with a BeanInfo.

Fortunately the call is pretty harmless.

Visibility

There's another Beans interface called java.beans.Visibility. This interface is optional for

Java Beans, and was added late in the development cycle of Java Beans 1.0. It was, in

Java/Domino 4.6, Bob Balaban

Page 12-8

fact, added at the explicit request of Lotus and Iris to handle the fact that the NOI

classes present no user interface whatsoever (JavaSoft readily agreed that it was useful).

The Visibility interface is meant to handle two different situations:

 • A smart builder tool needs to know whether or not any given Bean

requires a user interface.

 • A Java Bean needs to know at any given time whether or not it is okay to

present a user interface.

In the first case, the tool can inquire of any Bean that implements the

java.beans.Visibility interface whether it requires a user-interface capability via the

needsGui() call. In the second case, a tool (or an Applet, more likely) can tell a Bean

either that it's okay or not okay to put up a user interface via the dontUseGui() and

okToUseGui() calls.

All the NOI classes implement the Visibility interface, and all return false for the

needsGui() call. Unfortunately, I suspect that most builders (and Applets) pretty much

ignore this interface. But I could be wrong about that; there are tools that deal just fine

with invisible Beans, such as those that play sound clips only. Still, there's an important

difference between "invisible" and "has no UI". Watch out for subtle problems in this

area when using builder tools together with the NOI classes.

Serialization

Serialization is the process by which an object instance is written to an output stream for

persistent storage. The reverse of serialization is called deserialization, which is the

process by which an object previously serialized is brought back into memory and re-

instantiated with the same state it had before.

In order for a class to be serializable, it must implement the interface

java.io.Serializable. This interface has no methods at all—it simply "marks" a class as

one which can be serialized (and, implicitly, deserialized).

Java/Domino 4.6, Bob Balaban

Page 12-9

Why is this particularly relevant to Java Beans? The answer is that Beans, as

components in a larger Applet or application, might very well be given a state at design

time, and be expected to know about that state later, at run time. Suppose, for example,

that you had a Java Bean which simply displayed a colored square on the screen, let's

call it BobsShape. BobsShape has (for the purposes of this example) the following

properties:

 • Height (in pixels)

 • Width (in pixels)

 • Location (x/y coordinate of the upper-left corner)

 • Color

You might go through the following steps when embedding that Bean in an Applet you

were constructing:

 1. Start the builder tool (JBuilder, Bean Machine, whatever), and create your

basic layout for the Applet.

 2. Explore a palette of available Beans, including BobsShape. Each available

Bean presents a design time icon to the builder, and that's the icon you see

for it.

 3. You select the icon for BobsShape, and drag it onto the palette at a specific

position. You now see a square of default size and color.

 4. Behind the scenes, the builder tool creates an in memory instance of the

BobsShape class, and sets the Location property of that instance to the

point to which you dragged it.

 5. You then stretch the lower-right corner to enlarge the square. The tool sets

the Width and Height properties appropriately.

 6. You use the tool's UI to select a different color for the square, the tool sets

the Color property of the BobsShape instance.

Now comes the fun part: You want to actually generate the Applet and save it in a jar

file so that it can be downloaded to someone's browser, whereupon they'll see a square

of correct size and color on the Applet's page in the correct position. There are two

different ways the builder tool could handle this:

Java/Domino 4.6, Bob Balaban

Page 12-10

 1. It can write out a bunch of Java source code for the Applet that has

hardwired in it the parameters for the Bean: color, size, position. At

Applet initialization time, the Java code would create a new instance of

BobsShape on the fly, then set its parameters appropriately. The shape

would then appear on the page where it was supposed to.

 2. A more elegant way to handle this would be to have at Applet generation

time each embedded Bean serialize itself to an output stream. The stream

would contain, for each embedded Bean, a binary representation of each

of the Bean's persistent properties (color, size, etc.). The stream would be

written to a .jar file, which would also contain the actual Applet code.

When the .jar file got downloaded to someone's browser, the Applet

would start up, deserialize all its components, and be off and running.

In the second mechanism, each Bean saves its own state onto some output stream. At

run time, the browser or the Applet is responsible for noticing that there is some

serialized information in the .jar file. It can then use Java's deserialization mechanism to

9a) construct each object instance that is required, and (b) tell each instance to

deserialize itself (load its individual property values) from an input stream.

The default behavior for serialization of an object is that all member variables in the

object instance are written to the output stream, unless they are declared transient.

Transient variables are skipped. Scalar values are simply written out. Object references

are recursively serialized. If an object needs control over how one or more of its

members is serialized, it can implement a writeObject() and a readObject() call to

customize the serialization and deserialization behavior. Still more control is offered by

the java.io.Externalization interface.

Serialization is a terrific piece of functionality for a few reasons. First, it is useful in

many situations, not just in the Applet builder scenario. Objects can be serialized for

persistent storage to disk (or to an object database), or for transmission across a network

(when you make a remote call with an object reference as an argument). Serialization

has to handle not just the storage of a single object, but must operate recursively as well,

Java/Domino 4.6, Bob Balaban

Page 12-11

serializing all objects to which a given object refers. While doing that, serialization has

to also maintain the integrity of all object references, so that if (for example) two objects

both refer to a third, the third object is not serialized more than once. If it were, then

when the stream was read back in and deserialized, you'd end up with two instances of

a class, whereas you only had one to begin with.

To invoke serialization you simply write an object to a special stream, of class

java.io.ObjectOutputStream. The writeObject() method on that class inspects the target

object to see if the Serialization or Externalization interfaces are implemented. If neither

interface is present, an exception is thrown.

When you deserialize objects, you simply read them off an instance of the class

java.io.ObjectInputStream. The readObject() call figures out what the next object in the

stream is, invokes its default constructor, and then tells the object (which we already

know is serializable) to read its members from the stream itself. The object emerges

fully constructed (possibly invoking readObject() recursively, if it has object member

variables).

You can see why this approach is attractive: there is much less code for tool

developers to write, and it provides a very nice general purpose mechanism for

persistent storage of all kinds, that any class can use. There's even a way you can do

implicit version control (of a limited sort), so that if you save an object to a stream,

modify the object's implementation by adding an additional member variable, and then

read the older version of the object back off an input stream, it will work (see the

documentation on java.io.ObjectStreamClass.getSerialVersionUID()). Of course, the new

member variable's data will be missing in the input stream, and you have to account for

that.

Domino's Java NOI, however, does not make use of serialization at this time. There

are a couple of reasons for this, both historical, and functional:

Java/Domino 4.6, Bob Balaban

Page 12-12

 • Serialization requires that each class have a default constructor. As we've

mentioned before, none of the NOI classes has a default constructor that is

really usable, because of the requirements of a strict containment

hierarchy. At the time that this particular design decision was locked

down (i.e., coded) there were no real Beans-aware builders to work with

(the Beans spec had just been released). Thus, there was really no way to

test out (in time) whether having a default constructor for each class could

be made to work, given the design constraints imposed by the back-end

Notes code (especially the one that says you can't have free-floating

objects).

 • It was never clear that any builders could really make effective use of the

NOI classes anyway, partly because the ones that we knew about in those

early days were so Applet centric, and partly because they were all very

property centric, whereas NOI makes heavy use of methods to do things

like instantiate child classes.

 • The Java 1.1 software that incorporated robust object serialization wasn't

available early enough for us to be able to come to grips with it in time for

the 4.6 release.

As a result, none of the NOI classes implement either the Serializable or the

Externalizable interfaces. Furthermore, all member variables in all the NOI classes are

declared transient. This means that, at this time anyway, you can't use a builder tool to

set an NOI object's initial state at design time, save the object in a .jar file, and have it

"remember" that state later at run time.

Furthermore, any builder tool that relies on being able to instantiate an NOI object

at design time using its default constructor had better be able to trap a System.exit() call,

as that's what the default base class constructor for NOI does (remember, no one is

supposed to call it). The developers of IBM's BeanMachine discovered this quirk in time

to deal with it, but I don't know if any of the other vendors have done so.

NOI and Builder Tools

Java/Domino 4.6, Bob Balaban

Page 12-13

I've experimented using two different Java development environment products with

the Domino Java NOI: Borland's JBuilder and Symantec's Visual Cafe. I picked these

two to try out because they are popular tools from reputable vendors (this isn't a

product review or endorsement; I just wanted to share a bit of experience with you

about how NOI works in these kinds of environments). There are other tools that are

(I'm sure) perfectly good too, I didn't have time to try out every one.

One tool that I know will not work with Domino NOI is Microsoft's Visual J++. The

problem with VJ++ is that Microsoft never adopted the standard Java Native Interface

(JNI) architecture. JNI is the specification which allows Java code to call into C or C++

modules, an important requirement for using the Notes classes.

The choices for Java development tools range from the simple (any text editor for

typing in Java code, command line Java Development Kit compiler and interpreter from

JavaSoft) to the fully featured (syntax driven editor, source code debugger, performance

profiler). For Java Beans, which tend to the, shall we say, "rich" end of the functional

spectrum, the full-featured development environments are a big plus, especially when it

comes to debugging. If the application or Agent you're writing is small and simple, a

few System.out.println() calls and a decent Java Console (as in the Notes client) are

about all you need. For an event-driven, embeddable component with heavy user-

interface requirements involving hundreds of lines of code, a real debugger is a big win.

Some of the new Java development tools also offer features like source code

versioning and archiving. Anyhow, I picked these two products to try out, and was

pleased with the results, once I got them set up and operational.

Borland's JBuilder is strong in its handling of Java Beans: Borland has really gone to

town with its exploitation of the Beans introspection and event-handling features (no

surprise there—they contributed to the original Beans specifications). I was hoping they

would figure out (as the Bean Machine developers did) that the Domino NOI classes

could really be treated as Beans, but for the lack of default constructors). Unfortunately,

Java/Domino 4.6, Bob Balaban

Page 12-14

JBuilder refused to recognize all but a few of the NOI classes as Beans when I tried to

load them onto the components palette (see Figure 12.1).

Figure 12.1 JBuilder's reaction to NOI as Beans.

Symantec's Visual Cafe likewise refused to treat any of the NOI classes as Beans. Both,

however, did a fine job of debugging the samples. Figure 12.2 shows Visual Cafe in

debug mode on the sample debuggable Agent Ex90Conflict, from Chapter 9, and Figure

12.3 shows approximately the same code in the JBuilder debugger.

Figure 12.2 Debugging the Ex90Conflict Agent with Visual Cafe.

Figure 12.3 Debugging the Ex90Conflict Agent with JBuilder.

Summary: Are NOI Objects Java Beans?

The answer to whether or not the NOI objects are "real" Beans is probably debatable. If

you agree that serialization is an option, not a requirement, then the only reason you

wouldn't be able to consider the NOI classes to be true Beans is that they don't support

a real default constructor (which could in all likelihood be fixed in a future Domino

release). If you feel strongly that serialization is a required trait, then you'll argue that

they aren't real Beans at all. If you take the pragmatic approach and say that they're not

Beans because two builder tools won't treat them that way, then I really can't disagree

too much.

In the end I'm not sure it matters very much one way or the other, at least not right

now, given the current UI centric focus of Beans development. When more vendors and

tools start focusing on using Java Beans as a component technology aimed at server

Application development, then I think Domino NOI will have a strong role to play.

Besides that, whether the NOI classes are "real" Beans or not doesn't seem to affect our

ability to use different development tools to create and debug interesting Java programs

that make use of Domino objects, as you've seen with both JBuilder and Visual Cafe.

Java/Domino 4.6, Bob Balaban

Page 12-15

In the next chapter, we'll take a look at how to use yet another Java API together

with the Java NOI to access relational databases.

